Preliminary communication

Metallocene-bridged cryptands

I. X-Ray structural study of 1,1"; 1',1" -bis(1,4,10,13-tetraoxa-7.16-diazacvclooctadecane-7,16-diyldicarbonyl)bisferrocene

Martin C. Grossel *, Mark R. Goldspink, Jonathon P. Knychala,

Bourne Laboratory, Royal Holloway and Bedford New College, University of London, Egham Hill, Egham, Surrey, TW20 QEX (Great Britain)

Anthony K. Cheetham and Joseph A. Hriljac

Chemical Crystallography Laboratory, University of Oxford, Hooke Building, 9 Parks Road, Oxford, OX1 3PD (Great Britain)

(Received April 11th, 1988)

Abstract

An X-ray diffraction study of the title compound has revealed a centrosymmetric molecule with a large cryptand cavity (radius ca. 1.65 Å), in agreement with ion-extraction experiments.

The capacity of crown ethers and cryptands [1] to bind metal ions selectively offers exciting possibilities for the construction of ion-specific detectors and related devices [2]. A key problem lies in constructing a ligand in which there is detectable electronic interaction brought about by metal-ion binding. One approach has been to incorporate dye moieties into the crown/cryptand skeleton [3]; another is to bridge the cryptand with a metallocene unit such as ferrocene [4-7]. A number of polyoxa- and polythia-ferrocenophanes have been reported [4,5], and the crystal structures of a polyoxathiaferrocenophane (1) [5], and a thiocyanate complex (2) [6] have been described.

NCS-

(2)

0022-328X/88/\$03.50

Reaction of 1,1'-bis(chlorocarbonyl)ferrocene with diaza-[18]-crown-6 gives 1,1'-(1,4,10,13-diazacyclooctadecane-7,16-diyldicarbonyl)bisferrocene (3) and the cryptand dimer 4, the title compound [7]. A crystal structure of the monomer 3 as its

(4)

dihydrate has just been reported [8]. We now report an X-ray structural study of the dimer, the results of which provide further insight into its previously reported dynamic NMR behaviour [7,9]; we also comment on its ion-binding properties.

The X-ray structure of 4 shown in Fig. 1 * reveals that the cyclopentadienyl rings of each of the ferrocene units are staggered and tilted slightly towards the centre of the cryptand cavity (mean tilt angle 2.5°). Small deviations from planarity have previously been observed in the macrocyclic ferrocenophane crown ether (1) (tilt angle 2.3°) [5] and the thiocyanate complex 2 (tilt angle 3.3°) [6]. In the former case the cyclopentadienyl rings were eclipsed but in the latter they are staggered.

The internal diameter of the cavity of 4 is estimated to be ca. 3.3 Å using Chem-X [10]. Whilst the molecular conformation of the cryptand is probably a poor

^{*} Crystal data for 4: $Fe_2C_{49}H_{64}N_4O_{12}$, M = 1000.73, triclinic, space group $P\overline{1}$, $a \, 11.709(5)$, $b \, 13.310(2)$, c 15.527(8) Å, $\alpha \, 94.29(3)$, $\beta \, 96.73(4)$, $\gamma \, 101.00(3)^{\circ}$, U 2347.2 Å³, Z = 2, $D_c \, 1.419$ g cm⁻³. The structure was solved by Patterson and difference techniques, and refined [11] using 2830 unique data $I > 3\sigma(I)$, measured on an Enraf-Nonius CAD-4F diffractometer with Mo- K_{α} radiation $\mu \, 6.83$ cm⁻¹. The final R value is 0.090. Atomic coordinates, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Fig. 1. Two views of the molecular structure of 4 with selected atoms labelled. Selected distances: Fe-C (average) 2.03 Å, Fe(1)–Fe(2) 14.57 Å, O(13)–O(26) 5.52 Å, O(16)–O(23) 5.46 Å, O(33)–O(46) 5.64 Å, O(36)–O(43) 5.12 Å, O(13)–O(46) 7.99 Å, O(16)–O(43) 6.34 Å, O(23)–O(36) 7.78 Å, O(26)–O(33) 7.38 Å.

representation of that to be expected for a cryptate (the oxygen bridges are lying external to the cavity for example, Fig. 1), extraction experiments do suggest a maximum complexing efficiency for Rb^+ (> Cs^+ > K^+ > Na^+) consistent with such a cavity size. The average cavity size for the individual crown ether rings suggests a maximum ion-binding diameter of ca. 2.6 Å but no evidence for binding of Li^+ or Na^+ has been found.

A particularly noteworthy feature of the dynamic NMR data for 4 is that two different dynamic processes are observed and it has been suggested that the barrier for rotation about the amide C(O)–N bond has a higher activation energy (ΔG^{\ddagger} 67 kJ mol⁻¹) than that for rotation about the ferrocene–carbonyl bond (ΔG^{\ddagger} 50 kJ mol⁻¹) [7]. Consistent with this view, the amide units are approximately planar in 4 but each carbonyl group is tilted well away from the plane of the ferrocenyl cyclopentadienyl rings (by ca. 35°). Each carbonyl is disposed *trans* relative to its neighbours, as previously proposed [7].

The solid-state structure of **4** emphasises the rigidity of the ferrocene spacer and that there is little likelihood of direct interaction of the iron atoms with a bound metal ion. We are, however, currently exploring the possibility of electron transfer processes between the ferrocene units and reducible metal ions bound in the cavity.

References

- 1 J.M. Lehn, Acc. Chem. Research, 11 (1978) 49; C.J. Pedersen, J. Am. Chem. Soc., 89 (1967) 2495, 7017.
- 2 A. Shanzer, J. Libman, and F. Frolow, Acc. Chem. Res., 16 (1983) 60.
- 3 H.-G. Löhr, and F. Vögtle, Acc. Chem. Res., 18 (1985) 65.
- 4 G. Oepen, and F. Vögtle, Liebigs Ann.Chem., (1979) 1094; S. Akabori, S. Shibahara, Y. Habata, and M. Sato, Bull. Chem. Soc. Jpn., 57 (1984) 63 and ref. therein.
- 5 P.L. Bellon, F. DeMartin, V. Scatturin, and B. Czech. J. Organomet. Chem., 265 (1984) 65.
- 6 S. Akabori, Y. Habata, and M. Sato, Bull. Chem. Soc. Jpn., 57 (1984) 68.
- 7 A.P. Bell, and C.D. Hall, J. Chem. Soc. Chem. Commun., (1980) 163; P.J. Hammond, P.D. Beer, C. Dudman, I.P. Banks, C.D. Hall, J.P. Knychala, and M.C. Grossel, J. Organomet. Chem., 306 (1986) 67 and references therein.
- 8 P.D. Beer, C.D. Bush, and T.A. Hamor, J. Organomet. Chem., 339 (1988) 133.
- 9 P.J. Hammond, A.P. Bell, and C.D. Hall, J. Chem. Soc. Perkin Trans. I, (1983) 707; P.D. Beer, J. Elliot, P.J. Hammond, C. Dudman, and C.D. Hall, J. Organomet. Chem., 263 (1984) C37.
- 10 Chem-X, developed and distributed by Chemical Design Ltd., Oxford, England.
- 11 D.J. Watkin, J.R. Carruthers, and P.W. Betteridge, 1985 CRYSTALS User Guide, Chemical Crystallography Laboratory, Oxford.